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The Relations between Scalar Modes in a Lenslike

Medium and Vector Modes in a Self-Focusing
Optical Fiber

G. L. YIP, MEMBER,IEEE, ANRS. NEMOTO

AfMracf-The relations are established between the scalar modes

in an infinite lenslilre medium and the vector modes in a self-focus-

ing optical fiber with a filte homogeneous cladding. It is shown that

both the transverse fields and the longitudinal fields of the vector

modes can be expressed in terms of the scalar modes, provided the

fiber is operated in the core mode region. Otherwise, significant

T lrNTRODucTION

discrepancies could aris~. The scalar modes, however, carinot de-

scribe the cladding mod,es which are caused by tie index discon=-

tintilty at the outer surface of the cladding.

/’ In integrated and fiber optics many problems involve a medium

with an inhomogeneous refractive index. When one is confronted

with a m’oblem related to a self-focusimz o~tical fiber, it is essential
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Fig. 4. Amplitudes of first two propagating modes in each medium as
a function of slant angle a. TE 10 mode incidence with a fAo = 1.2 is
assumed.
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Fig. 5. Amplitudes of first t W? propagating modes in each medium as
a function of a 1A 0.
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to know its propagation characteristics. The inhomogeneous nature

of this fiber makes its properties more difficult to analyze than the

fiber with a homogeneous core. The simplest model of the self-

focusing fiber is that of an infinite lenslike medium. For this medium

many studies have been carried out using ray-optical method, wave-

op&s method, and vector field analysis [1], [2]. In particular,

the wave-optics method yields the scalar modes. The numerical

methods for computing the propagation characteristics of self-

focusing fibers with an infinite homogeneous cladding were employed

by several authors [3], [4]. Most recently, the numerical method

based on an earlier work’ of Vigants [5] was applied to the more

realistic self-focusing fiber with a finite homoge~eous cladding

[4], [6].

Since the smlar modes can be expressed in analytic functions,

it is, in many situations, convenient to approximate the vector

modes in the self-focusing fiber by the scalar modes whenever

possible. Before doing this, however, it is necessary to understand

the relations between the scalar and vector modes and the extent to

which the scalar-mode approximation is valid. So far nothing has

been reported on this subject. The purpose of this short paper is to

establish the relations between the scalar modes in an infinite

lenslike medium and the vector modes in a self~focusing fiber with

a finite homogeneous cladding, and to show the limitations of the

scalar-mode approximation. For this purpose the various propaga-

tion characteristics of the scalar modes are compared with those of

the vector modes obtained by the numerical method [4], [6].

II. THE SCALAR MODES IN A LENSI,IKE MEDIUIM

In a cylindrical coordinate system (r,o,z) the refractive index

distribution of the fiber is assumed to be

/

no[l - A (r/a) 2], 0sr5a

n (r) = no(l —A), a<r<~ (1)

{ n3, b<r<m

where a and b m-e the inner and outer radii of cladding, and

O < A<< 1. Let us consider an infinite lenslike medium whose

index distribution is expressed as

$(r-) = ql[l— (r/ti)q~&. (2)

The index variation in the core region of the fiber is well approxi-

Manuscript received April 2, 1974; revised September 9, 1974. This
work was supported by the Defence Research Board and National
Research Council of Canada.

The authors are with the Department of Electrical Engineering.
McGiU University, Montreal. P. Q., Canada.



261SHORT PAPERS

mated by ~(r) if we make d = a/ (2A) 112. The scalar modes in this

medium are given by [7], [8] (time dependence exp (@) k as-

sumed)

~nn (T) =

where so

I:l=*nm(r){:::}exp(-’Bnmz)‘3)
i(T(n7fi))’’kYLm”(~)exp’-(2’(r(sO)01’l‘4)

LL~2 = (do)’ – 2 (n + 2m + 1) /soz (5)

= (d/nJcO)’/2, n and m are nonnegative integers, ko =

2rr/xO is the wavenumber in” free space, and L~* (z) = (e~.r-’/m! ).

(d~/o!z~) (e-zz~+~) is the generalized Laguerre polynomials. .SO is

called the characteristic spot size of the medium and is expressed

as Soz = a/nOkO (2A) ‘Iz by using c1 = a/ (2A) Ifz. Hereafter, &~jlto

and (d~mfi/dkO)’1 are referred to as the normalized propagation con-

stant and the normalized group velocity of the scalar nm modes

(UmmCor Un~S), and k,a as the normalized frequency.

III. COMPARISONS OF THE VARIOUS

CHARACTERISTICS

In Fig. 1, the normalized propagation constants of several scalar

modes are compared with those of the vector modes in the fiber with

a finite cladding obtained by the numerical method [4], [6]. The

paired numbers in this figure correspond t,o the mode numbers

(rim) of the scalar modes (this applies also to Figs. 2 and 3) and U

represents either &/kO or p/kO, where @ is the propagation constant

of the vector modes. In Fig. 1 (a) 1 the results f or the infinite-cladding

approximation obtained by the numerical method [4], [6] are

also shown for comparison. Note that, considering the finite core

radkrs, the cutoff conditions for the scalar modes are given by [9]

&~/kO = no (1 – A) = 1.5. Hence, for the scalar modes, the nor-

malized propagation constants less than 1.5 have physical meaning

only when we consider an infinite lenslike medium. It is seen from

Fig. 1 (a) that, far from cutoff, the three propagation constants

cannot be distinguished. While the propagation constants for the

infinite-cladding approximation terminate in U = 1.5 as cutoff

points, the propagation constants of the scalar modes are close to

those of the vector modes in the fiber with a finite cladding. How-

ever, as seen from Fig. 1 (b), the propagation constants of the

scalar modes deviate remarkably from those of the vector modes

when koa is small.

In Fig. 2 the normalized group velocities of several scalar modes

are compared with those of the vector modes obtained by the nu-

merical method [6] (o@/c, where c is the light velocity in free space,

represents either (d~n~/dkO)’1 or (d6/dko) ‘1). In this figure the
results for the infinite-cladding approximation are also shown [6].

While the infinite-cladding approximation does not give a correct

variation of group velocities with frequency for small values of k~a,

the group velocities of the scalar modes are similar in variation to

those of the vector modes in the fiber with a finite cladding. From

these figures alone, however, we cannot obtain enough information

to establish the relation between the scalar and vector modes. There-

fore, the radial field distributions of several scalar modes are com-

pared with those of the vector modes. This comparison was done

in two cases where 1) U = 1.30 and 2) U = 1.5105 or 1.517. Cases

1) and 2) correspond to the cladding mode region and the core

mode region, respectively.

In Fig. 3 the radial field distributions of several scalar modes are

compared with the transverse electric fields of the vector modes

obtained by the numerical method [6]. In this figure the longitu-

dinal fields obtained from the scalar-mode approximation are also

compared with those of the vector modes (see the following sec-

, For the vector modes in the fiber with’ a finite cladding, the values
of the parameters are the same as in Ahmew [6]. This applies also to
Figs. 2, 3, and 5.
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Fig. 1. Normalized propagation constant Cr versus normalized fre-
quency fc,a. — for the fiber with a finite cladding obtained by the
numerical method. —– – infinite-cladding approximation obtained by
the numerical method. –-– scalar-mode approximation (5). a—HE II;
b—TE~,; c—TMo I; d—HE,,; c—EH,,; f—HE~,; g—HE~,; h—TEaz;
i—TMo~; ]—EH*I.
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Fig. 2. Normalized group velocity v,, /c versus normalized frequency.
— for the fiber with a finite cladding obtained by the numerical
method, – – — infinite-cladding approximation obtained by the nu-
merical method. –-– scalar-mode approximation. a—HE II; b—TE 01;
c—TMo L; d—HEz I; c—EHII; f—HEu; g—HEj,.

tions). Since all the electric-field components of the vector modes

are normalized by the maximum values of E,, tb e fields of the scalar

modes are also normalized by their maximum values. In case 1),

the scalar fields deviate remarkably from the vector fields, corre-

sponding to the notable discrepancies bet,ween the propagation

constants of the scalar and vector modes [Fig. 1 (b)]. In case 2),

especially when U = 1.517, the scalar fields are hardly distinguish-

able from the vector fields.

IV. RELATIONS BETWEEN THE SCALAR

AND VECTOR MODES

It is seen from Fig. 3 that, far from cutoff, the fields of the vector

modes are tightly bound to the core and have negligibly small

amplitudes in the cladding. Therefore, the fiber can be regarded as

an infinite lenslike medium when it is operated in the core mode

region. According to the vector-field analysis [1], the transverse

fields of the hybrid modes in an infinite Ienslike medium of (2) are

given by
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Fig. 4. Electric-field structures of the (a) HE* I and (b) EHII modes.
.
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Fig. 5. Fraction of power in the core. — for the fiber with a finite
cladding obtained by the numerical method. –-– scalar-mode ap-
proximation: (16).

**= ’’(:Pm-l””(aexp[—(1/2) (r/sO)Z], i = 1,2 (7)

lYn0k0)2-2(n+2rm02‘8)
wheren = 1,2,3,. ... m = 1,2,3,. . . , i,, it, andi. arethe unit vectors

inther, t?, andz directions, respectively, theoand zdependencesof

the fields are assumed to beexp (–jnd) and exp (–jp,z), and the

upper (lower) sign corresponds to i = l(i = 2) [this applies also

to (9) and (10). c, are the constants and YO is the intrinsic admittance

of free space. By adding the 0 and z-dependent factors to the first

equation of (6) and producing the real functions of O, the r and 6

components of the electric fields are expressed as

E}=w’{::elexp(-’’z)’‘=’2 “)
It can be shown [6] that, far from cutoff, the transverse electric

fields of the hybrid modes in the fiber take the same form as (9)

with ~, and @i replaced by the unknown functions, namely the HE

(EH) modes have the same form as (9) with i = 1 (i = 2). In

fact, from (27) and (28) in [1], the following relations are obtained:

E=CO/HzcZ~ = + (nOYO)’1 cos n8/sin n@, ~ = 1,2. (lo)

Therefore, i = 1 (i = 2) corresponds to the HE (EH) modes [10].

From (4), (5), (7), and (8) it follows that

*S cc *@, 62 = i%. (12)

where p=n —1, q=m —1, and t = n + 1. These relations

were pointed out also by Kurtz [11]. It is seen from Figs. 1 and 3

that, far from cutoff, the radial field distributions and propagation

constants of the HEII, HE,,, HE21, and HEs1 modes satisfy (11)

and those of the EHII and EHZI modes satisfy (12). Therefore, we

can conclude that, far from cutoff, the HEn~ modes in the fiber

correspond to the scalar pq modes and the EH~~ modes correspond

to the scalar tq modes. Similar investigations on the TE and TM

modes yield the following relations when the fiber is operated in

the core mode region:

{1
E,

e 3WIq (r) exp ( —j&z) (13)

E,

where the upper (lower) equation is applied to the TEO~ (TMO~)

modesz and q = m — 1. Note that E, = O(Ed = O) for the TE

(TM) modes. For the transverse magnetic fields it was confirmed

from the numerical results [6] that, far from cutoff, the same rela-

tion as the second equation of (6) holds approximately for the HE,

EH, TE, and TM modes.

To summarize, when the fiber is operated in the core mode region,

the transverse electric fields of the vector modes are expressed

approximately as follows:

where i. and iw are the unit vectors of x and y directions in the rec-

tangular coordinate system (z,y,z ). Equation (14) is obtained from

(3), (9), (11)- (13), and the relation between the rectangular and

cylindrical components of the field. For example, from (3) and (14)

it follows that

H
E3,HE

= V,O(r) (i. cos O %iw sin /3) exp ( –@Oz). (1.5)

EIIEH

Hence, far from cutoff, the r and z dependence of the HE;,, and

EH,l modes are almost the same. But, as shown in Fig. 4, these

modes differ appreciably in their field structures. The fraction v

of power carried in the core is defined as the ratio of the energy

passing through a transverse plane at z = constant within the core

to the energy passing through the entire plane at z = constant.

For the HEn. modes ~ is given by

from (3), (4), and (14). In Fig. 5, ~P* are compared with the power

fraction obtained numerically [6] for several modes. It is seen that

agreement also can be recognized when k~a is large.

z The (+ ) signs in (13) have no physical significance and were intro-
duced only for the convenience of expression [see (14)].
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V. EXPRESSIONS FOR THE LONGITUDINAL FIELDS

From Maxwell’s equations and (6), (7), (9), (11), and (12),

the longitudinal components of the fields are given by

{::J=’Fnm(’){:::}exp(-’”pgz)“7)

(19)

for the HEm~ modes (17) and for the EHn~ modes (18) where

Z= (nOYO)-l. These equations can be derived also by using (11)

and (12) in this short paper and (27), (2S), and (34) in [1]. Sim-

ilarly, we obtain

{}

ZHz,Om
N –jGom (r) exp ( –@I&) (20)

Ez,ti

for the TE,JTM,~ modes where G,~ is defined by the lower equa-

tion of (19) with n = O. In Fig. 3 the radial functions F.,,, and G.~

are compared with the z component of the electric field obtained

by the numerical method [6], and good agreement is seen when the

fiber is operated in the core mode region. In the Appendix the

orthogonality relations of the vector modes are given.

VI. CONCLUSIONS

The relations between the scalar modes in a lenslike medium and

the vector modes in a self-focusing optical fiber have been examined.

By comparing the various propagation characteristics of the scalar

modes with those of the vector modes obtained by the numerical

method, and also by studying the field equations in a Ienslike

medium, it has been found that the vector modes in a self-f ocnsing

fiber with a finite homogeneous cladding can be adequately approxi-

mated by the scalar modes in an infinite lenslike medium when the

fiber is operated in the core mode region where the normalized

frequencies kw are large. Since the scalar modes can be expressed

in terms of the analytical functions, they are in many situations

more convenient to use. The present study also provides a means of

identifying the scalar modes with the vector modes. However, ou&

side the core mode region or for small values of kaa, tne scalar-mode

approximation yields propagation characteristics which are signif.

ieantly different from those obtained by rigorous numerical methods.

One should, therefore, exercise caution in using the scalar-mode

approximation in connection with the study of integrated and fiber

optics. A further point to notice is that both the scalar modes and

the v~ctor modes in a fiber with an infinite cladding cannot describe

the cladding modes in the fiber with a finite cladding.

APPENDIX

The following orthogonality relations are easily verified by using

(3), (4), and (14), and the orthogonality of the generalized Laguerre

polynomials

z, E.m=E .E.Imt

//{

HE*
.

}

rdrd~ = &,n16mmI (Al)

00 &mEH . &,m,EE*

Ew/’rE .Eom,’fE*

u{

CUT

}

rdrde = &mt (A2)

o EomTM. Eom.’r M*

[

2!r

EnmHE .Entm,EH* de = O (A3)

o

rE’’mHE”E21d*(A4)

rEnmEH”K2do(A5)

EomTE.Eti/’r~* = O (A6)

where the asterisk (‘) denotes a complex conjugate, ~,i is the Kro-

necker delta, and (A3 ) – (A6) hold even if the asterisk is dropped.
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