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The Relations between Scalar Modes in a Lenslike
Medium and Vector Modes in a Self-Focusing
Optical Fiber '

G. L. YIP, MEMBER, 1EEE, AND S. NEMOTO

Abstract—The relations are established between the scalar modes
in an infinite lenslike medium and the vector modes in a self-focus-
ing optical fiber with a finite homogeneous cladding. It is shown that
both the transverse fields and the longitudinal fields of the vector
modes can be expressed in terms of the scalar modes provided the
fiber is operated in the core mode region. Otherwise, significant
discrepancies could arise. The scalar modes, however, cannot de-
scribe the cladding modes which are caused by the index discon~
tinuity at the outer surface of the cladding.

I. INTRODUCTION

In integrated and fiber optics many problems involve a medium
with an inhomogeneous refractive index. When one is confronted
with a problem related to a self-focysing optieal fiber, it is essential
to know its propagation characteristics. The inhomogeneous nature
of this fiber makes its properties more difficult to analyze than the
fiber with a homogeneous core. The simplest model of the self-
focusing fiber is that of an infinite lenslike medium. For this medium
many studies have been carried out using ray-optical method, wave-
optics method, and vector field analysis [1], [2]. In particular,
the wave-optics method yields the scalar modes. The numerical
methods for computing the propagation characteristics of self-
focusing fibers with an infinite homogeneous cladding were employed
by several authors [3], [4]. Most recently, the numerical method
based on an earlier work of Vigants [5] was applied to the more
realistic self-focusing fiber with a finile homogeneous cladding
(4] [6].

Sinee the scalar modes can be expressed in analytic functions,
it is, in many situations, convenient to approximate the vector
modes in the self-focusing fiber by the scalar modes whenever
possible. Before doing this, however, it is necessary to understand
the relations between the scalar and vector modes and the extent to
which the scalar-mode approximation is valid. So far nothing has
been reported on this subject. The purpose of this short paper is to
establish the relations between the scalar modes in an infinite
lenslike medium and the vector modes in a self-focusing fiber with
a finite homogeneous cladding, and to show the limitations of the
scalar-mode approximation. For this purpose the various propaga-
tion characteristics of the scalar modes are compared with those of
the vector modes obtained by the numerical method [4], [6].

II. THE SCALAR MODES IN A LENSLIKE MEDIUM

In a cylindrical coordinate system (r,6,z) the refractive index
distribution of the fiber is assumed to be

no[1 -~ A(r/a)?], 0<r<a
n(r) = {no(l —A), a<r<b (1)
3, b<r< o

where a and b are the inner and outer radii of cladding, and
0 < ALK 1. Let us consider an infinite lenslike medium whose
index distribution is expressed as

A(r) =mnll — (r/d)2]v2 @

The index variation in the core region of the fiber is well approxi-
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mated by #(r) if we make d = a/(2A)12 The scalar modes in this
medium are given by [7], [8] (time dependence exp (jwt) is as-
sumed)

Upm® cos nh
= '//nm(r) €xXp (—]ﬁnmz) (3)
l']nm‘s sin né
L V(Yo (T) [—(1/2)(r/50)7] (4)
0 = (oim) () 2 () e -
Bum? = (moko)? — 2(n + 2m + 1) /s¢ (5

where so = (d/ndk0)V%, n and m are nonnegative integers, ko =
27 /X is the wavenumber in’free space, and L,*(z) = (ez™»/m!)+
(dm/dxm) (e7=x7tm) is the generalized Laguerre polynomials. so is
called the characteristic spot size of the medium and is expressed
as s = a/nko(2A)12 by using d = a/(2A)V2. Hereafter, Bum/ko
and (9Bnm/dko) " are referred to as the normalized propagation con-
stant and the normalized group velocity of the scalar nm modes
(Unm® or Unn®), and koa as the normalized frequency.

III. COMPARISONS OF THE VARIOUS
CHARACTERISTICS

In Fig. 1, the normalized propagation constants of several scalar
modes are compared with those of the vector modes in the fiber with
a finite cladding obtained by the numerical method [4], [6]. The
paired numbers in this figure correspond to the mode numbers
(nm) of the scalar modes (this applies also to Figs. 2 and 3) and U
represents either Bn./ko or 8/k., where g8 is the propagation constant
of the vector modes. In Fig. 1(a)! the results for the infinite-cladding
approximation obtained by the numerical method [47], [6] are
also shown for comparison. Note that, considering the finite core
radius, the cutoff conditions for the scalar modes are given by [9]
Bnm/ko = no (1 — A) = 1.5. Hence, for the scalar modes, the nor-
malized propagation constants less than 1.5 have physical meaning
only when we consider an infinite lenslike medium. It is seen from
Fig. 1(a) that, far from cutoff, the three propagation constants
cannot be distinguished. While the propagation constants for the
infinite-cladding approximation terminate in U = 1.5 as cutoff
points, the propagation constants of the scalar modes are close to
those of the vector modes in the fiber with a finite cladding. How-
ever, as seen from Fig. 1(b), the propagation constants of the
scalar modes deviate remarkably from those of the vector modes
when ko is small.

In Fig. 2 the normalized group velocities of several scalar modes
are compared with those of the vector modes obtained by the nu-
merical method [67] (v,/c, where ¢ is the light velocity in free space,
represents either (08n./9ke)™ or (38/dke)™). In this figure the
results for the infinite-cladding approximation are also shown [6].
While the infinite-cladding approximation does not give a correct
variation of group velocities with frequency for small values of koa,
the group velocities of the scalar modes are similar in variation to
those of the veetor modes in the fiber with a finite cladding. From
these figures alone, however, we cannot obtain enough information
to establish the relation between the scalar and vector modes. There-
fore, the radial field distributions of several scalar modes are com-
pared with those of the vector modes. This comparison was done
in two cases where 1) U = 1.30 and 2) U = 1.5105 or 1.517. Cases
1) and 2) correspond to the cladding mode region and the core
mode region, respectively.

In Fig. 3 the radial field distributions of several scalar modes are
compared with the transverse electrie fields of the vector modes
obtained by the numerical method [67]. In this figure the longitu-
dinal fields obtained from the scalar-mode approximation are also
compared with those of the vector modes (see the following sec-

1 For the vector modes in the fiber with a finite cladding, the values
of the parameters are the same as in Ahmew [6]. This applies also to
Figs. 2, 3, and 5.
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Fig. 1. Normalized propagation constant U versus normalized fre-
quency kea. — for the fiber with a finite cladding obtained by the
numerical method, — ~ — infinite-cladding approximation obtained by
the numerical method. - scalar-mode approximation (5). a—HEi1;
b—TEo; ¢—TMo; d—HE:; e~—EHi:; f—HE12; ¢—HE31; h—TEe;
i—TMys; j~—EHoai.
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Fig. 2, Normalized group velocity v,/c¢ versus normalized frequency.
— for the fiber with a finite cladding obtained by the numerical
method, — — — infinite-cladding approximation obtained by the nu-
merical method, —— scalar-mode approximation. a—HE1:1; b—TEo;
¢—TMoy; d—HE:z1; e—EHu; f—HE2; ¢—HE;:.

tions). Since all the electrie-field components of the vector modes
are normalized by the maximum values of E,, the fields of the scalar
modes are also normalized by their maximum values. In case 1),
the scalar fields deviate remarkably from the vector fields, corre-
sponding to the notable discrepancies between the propagation
constants of the scalar and vector modes [Fig. 1(b)]. In case 2),
especially when U = 1.517, the scalar fields are hardly distinguish-
able from the vector fields.

IV. RELATIONS BETWEEN THE SCALAR
AND VECTOR MODES

It 1s seen from Fig. 3 that, far from cutoff, the fields of the vector
modes are tightly bound to the core and have negligibly small
amplitudes in the cladding. Therefore, the fiber can be regarded as
an infinite lenslike medium when it is operated in the core mode
region. According to the vector-field analysis [17, the transverse
fields of the hybrid modes in an infinite lenslike medium of (2) are
given by



) (e) )

Fig. 3. Radial field distributions of the scalar and vector modes. — the
electric fields of the vector modes in the fiber with a finite cladding
obtained by the numerical method. — the fields of the scalar modes.
(4) and _(19). (a) 00 . (¢) 01 — HE12 (d)
20 — EHy. (6) 10 — TEou. () 10 — TMe:. () U = 1.30, (i) U =
1.5105 for (c) and (d); U = 1.517 for (a), (b), (), and (f). Two broken
lines in each figure indicate the positions of the inner and outer surfaces
of the cladding.

E® = (Fji, — i)¥;, HO = noVii, X E® (6)

nF1
¥, = ¢ (3> Lo lm( )exp [—(1/2) (r/so)?], ©=1,2 %)

So,
/ So? (8)

wheren = 1,2,3,+++,m = 1,2,3,+++, i, #5, and i, are the unit vectors
in the 7, 6, and z directions, respectively, the 6 and z dependences of
the fields are assumed to be exp (—jnf) and exp (—jB.z), and the
upper (lower) sign corresponds to 7 = 1(7 = 2) [this applies also
to (9) and (10). ¢, are the constants and ¥ is the intrinsic admittance
of free space. By adding the 6 and z-dependent factors to the first
equation of (6) and producing the real functions of 6, the r and 6
components of the electric fields are expressed as

B2 m—1
= (’noko)z —2ln+2
B m

E,® cos nf

=F sin 76

€xp (_jﬁlz)] 1= 1:2' (9)
E,@®

It can be shown [67] that, far from cutoff, the transverse electric
fields of the hybrid modes in the fiber take the same form as (9)
with ¥, and g; replaced by the unknown functions, namely the HE
(EH) modes have the same form as (9) with < = 1(z = 2). In
fact, from (27) and (28) in [17, the following relations are obtained:

B/, = 10)

Therefore, 7 = 1(Z = 2) corresponds to the HE (EH) modes [10].
From (4), (8), (7), and (8) it follows that

B1 = Bpq
B = th

where p =n—1, ¢g=m — 1, and ¢t =n + 1. These relations
were pointed out also by Kurtz [117]. It is seen from Figs. 1 and 3
that, far from cutoff, the radial field distributions and propagation
constants of the HEn, HE:.,, HEs, and HEs; modes satisfy (11)
and those of the EHy and EHa modes satisfy (12). Therefore, we
can conclude that, far from cutoff, the HE., modes in the fiber
correspond to the sealar pg modes and the EH.,, modes correspond
to the scalar {g modes. Similar investigations on the TE and TM
modes yield the following relations when the fiber is operated in
the core mode region:

=+ (no¥o) ! cos nd/sin nd, 1 =12

¥, \I’pq, (11)

Wy o ‘I/tq, (12)
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Fig. 4. Electric-field structures of the (a) HEs:: and (b) EH:1 modes,

-
o

POWER FRACTION
[<)
®

06 . 1 , . )
10 15 20 25
koa
Fig. Fraction of power in the core. — for the fiber with a finite
claddlng obtained by the numerical method. —— scalar-mode ap-
proximation: (16).
Ey
=~ Fly(r) exp (—jhg2) (13)
E,

where the upper (lower) equation is applied to the TEon (TMom)
modes? and ¢ = m — 1. Note that E, = 0(E; = 0) for the TE
(TM) modes. For the transverse magnetic fields it was confirmed
from the numerical results [6] that, far from cutoff, the same rela-
tion as the second equation of (6) holds approximately for the HE,
EH, TE, and TM modes.

To summarize, when the fiber is operated in the core mode region,
the transverse electric fields of the vector modes are expressed
approximately as follows:

Ewn®® = Upgiz — Upgly,

EOmTE

E.,F8 = thciz + thsiu

= Ulqsiz - U lqciyy EOmTM = Ulqcia: + Ulqsi:ll (14)

where i, and i, are the unit vectors of z and y directions in the rec-
tangular coordinate system (z,y,2). Equation (14) is obtained from
(3), (9), (11)~(13), and the relation between the rectangular and
cylindrical components of the field. For example, from (3) and (14)
it follows that

EslHE

= Wy (r) (Iz cOs 8 Fiy sin 0) exp (—7B2).- (15)

EnEH

Hence, far from cutoff, the r and 2z dependences of the HEs and
EHj;; modes are almost the same. But, as shown in Fig. 4, these
modes differ appreciably in their field structures. The fraction »
of power carried in the core is defined as the ratio of the energy
passing through a transverse plane at z = constant within the core
to the energy passing through the entire plane at z = constant.
For the HE,,, modes 7 is given by

N O Npg = 21/\1/1,427" dr (16)
0

from (3), (4), and (14). In Fig. 5, 5,, are compared with the power
fraction obtained numerically [6] for several modes. It is seen that
agreement also can be recognized when kea is large.

2 The () signs in (13) have no physical significance and were intro-
duced only for the convenience of expression [see (14)].



SHORT PAPERS

V. EXPRESSIONS FOR THE LONGITUDINAL FIELDS

From Maxwell’s equations and (6), (7), (9), (11), and (12),
the longitudinal components of the fields are given by

Ez,nm cos né
0 = G F o (1) exp (—JjBpe2) (17)
ZHz,nm sin né
E.nm — cosné
o Gm (1) exp (—jBu?) (18)
ZH , um sin né
F N4
nm 1 == 1 d pa
= (2T 52 (19)
Gnm noko T dr ‘I’tq

for the HE,,, modes (17) and for the EH,, modes (18) where
Z = (noYo)™'. These equations can be derived also by using (11)
and (12) in this short paper and (27), (28), and (34) in [17. Sim~
ilarly, we obtain

ZHz.Om
o —jGon (1) exp (—jrz) (20)

Ez.()m

for the TEy,/TM,, modes where Gy, is defined by the lower equa-
tion of (19) with n = 0. In Fig. 3 the radial functions F,,, and Gnn
are compared with the z component of the electric field obtained
by the numerical method [6], and good agreement is seen when the
fiber is operated in the core mode region. In the Appendix the
orthogonality relations of the vector modes are given.

VI. CONCLUSIONS

The relations between the scalar modes in a lenslike medium and
the vector modes in a self-focusing optical fiber have been examined.
By comparing the various propagation characteristics of the scalar
modes with those of the vector modes obtained by the numerical
method, and also by studying the field equations in a lenslike
medium, it has been found that the vector modes in a self-focusing
fiber with a finite homogeneous cladding can be adequately approxi-
mated by the scalar modes in an infinite lenslike medium when the
fiber is operated in the core mode region where the normalized
frequencies ko are large. Since the scalar modes can be expressed
in terms of the analytical functions, they are in many situations
more convenient to use. The present study also provides a means of
identifying the scalar modes with the vector modes. However, out-
side the core mode region or for small values of ke, the scalar-mode
approximation yields propagation characteristics which are signif-
icantly different from those obtained by rigorous numericalmethods.
One should, therefore, exercise caution in using the scalar-mode
approximation in connection with the study of integrated and fiber
optics. A further point to notice is that both the scalar modes and
the vector modes in a fiber with an infinite cladding cannot describe
the cladding modes in the fiber with a finite cladding.
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APPENDIX

The following orthogonality relations are easily verified by using

(3), (4), and (14), and the orthogonality of the generalized Laguerre
polynomials

e EanE'En/m'HE*
/ / rdrdf = Snn'Omm?
o ‘o |E,,BH.E,, BH*

(A1)
() 1‘r EOmTE'EOm'TE*
/ [ rdrdf = Spms (A2)
0 EoT™M. E,,, T M*
27
f BB+ B BH* d9 = 0 (A3)
0
27 EOm’TE*
/ E,nHE. de =0 (A4)
0 Eq,, TM*
2 EO”L’TE*
/ E,,FH. dg =0 (A5)
0 Eg,,/ TM*
EopTS+ Epyy TH¥ = 0 (A6)

where the asterisk (*) denotes a complex conjugate, 8,; is the Kro-
necker delta, and (A3)-(A6) hold even if the asterisk is dropped.
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